Assessing the follow-up of BART hemoglobin reported by the Wisconsin Newborn Screening Laboratory

Bao Yang
MPH Candidate

Background

- The Wisconsin Newborn Screening (NBS) Laboratory screens 70,000 babies each year for 47 genetic disorders.

- Hemoglobin Disease
 - alpha thalassemia
 - (BART Hemoglobin)

- Argininosuccinic Acidemia (ASA)
- Biotinidase Deficiency
- Citrullinemia (Type I & II)
- Congenital Adrenal Hyperplasia
- Congenital Hypothyroidism
- Cystic Fibrosis
- Fatty Acid Oxidation (12)
- Galactosemia
- Hearing Screening
- Hemoglobin S-Beta Thalassemia
- Hemoglobin S/C Disease
- Hemoglobin Variants
- Homocystinuria
- Hypermethioninemia
- Hyperphenylalaninemia
- Maple Syrup Urine Disease
- Organic Acidemia (15)
- Phenylketonuria
- Sickle Cell Disease
- Tyrosinemia (Type I, II & III)
Alpha thalassemia: Cause

- Deletion of the alpha chain gene which negatively affects the production of normal hemoglobin.
- A hemoglobin chain imbalance damages and destroys red cells, producing anemia.

Alpha thalassemia: Effects

Severity of alpha thalassemia depends on the number of alpha genes deleted.

1 gene deleted = silent carrier
2 genes deleted = mild or trait
3 genes deleted = hemoglobin H disease
4 genes deleted is fatal

No cure for alpha thalassemia
Objectives

To date, minimal follow-up has been undertaken.

Objectives of this study are:

1. To assess whether BART hemoglobin detected at birth actually resulted in a diagnosis of alpha-thalassemia.

2. To assess whether “High” BART hemoglobin detected at birth actually resulted in a diagnosis of alpha-thalassemia.

Dried Blood Spot Testing

- Blood from heel of newborn is taken
- Costs $69.50 (lab test $39.50, follow-up $30)
Newborn Screening Program for Hemoglobin

- The test for abnormal hemoglobins or “BART hemoglobin” is gel electrophoresis.
- Recommended follow up with primary care physician (PCP) at 6–12 months of age is a Complete Blood Count (CBC) and electrophoresis.
- Hematologic consultation is recommended for babies with Hemoglobin H disease, a severe form of alpha thalassemia.

One Study Year: 2006 Statistics

- 70,867 babies born in WI
- 2,392 (3.4%) Asian babies
- 39 (1.6%) BART reports issued on Asian babies
 - 38 Bart Hemoglobin, 1 High BART
Methods: Study Population

- 234 Hmong and other Asian babies with BART hemoglobin were born in Wisconsin between 2001 and 2006

- All babies were reported by NBS Laboratory as having BART hemoglobin

- 13 of these 234 babies were identified as “High” BART

Methods: Data Collection

- The PCP for each of the 234 subjects was identified

- Follow-up letter was sent to each PCP

- The PCP was asked to provide follow-up data including lab results

- PCPs who did not respond were telephoned
Methods: Data Coding

- Dr. Carol Diamond, UW hematologist, reviewed laboratory data and made a tentative diagnosis if none was reported.

- For the study, all information received was de-identified and entered into a Microsoft Excel database.

Response Rates

Follow up letter was sent 234 Cases where any information was received

Response rate: Initial mailing 65%
Response rate: After follow-up 83%

Information received
Diagnosis was reported 118 (50.5%)
Lost to follow up 104 (44.4%)
Undeliverable 8 (3.4%)
Pending 4 (1.7%)
Lost to follow up (n=104)

Reasons for loss to follow-up

<table>
<thead>
<tr>
<th>Reason</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response</td>
<td>38</td>
</tr>
<tr>
<td>Child no longer seen</td>
<td>31</td>
</tr>
<tr>
<td>Child never seen</td>
<td>25</td>
</tr>
<tr>
<td>No lab test performed</td>
<td>10</td>
</tr>
</tbody>
</table>

Objective 1:

Diagnosis was reported (n=118)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha thalassemia</td>
<td>74</td>
<td>63%</td>
</tr>
<tr>
<td>Hemoglobin H disease</td>
<td>4</td>
<td>3%</td>
</tr>
<tr>
<td>Normal</td>
<td>15</td>
<td>13%</td>
</tr>
<tr>
<td>Anemia</td>
<td>8</td>
<td>7%</td>
</tr>
<tr>
<td>Other</td>
<td>17</td>
<td>14%</td>
</tr>
</tbody>
</table>
Diagnoses in the category “Other”

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>17 (14%)</td>
</tr>
<tr>
<td>- BART Hemoglobin</td>
<td>12</td>
</tr>
<tr>
<td>- Beta thalassemia minor</td>
<td>1</td>
</tr>
<tr>
<td>- Delta beta thalassemia trait</td>
<td>1</td>
</tr>
<tr>
<td>- Failure to thrive</td>
<td>1</td>
</tr>
<tr>
<td>- Homozygous Hb E or E-B thalassemia</td>
<td>1</td>
</tr>
<tr>
<td>- Misinterpretation of lab report</td>
<td>1</td>
</tr>
</tbody>
</table>

Objective 2:

Assessing High BART babies (n=13)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha thalassemia diagnosis confirmed</td>
<td>5</td>
</tr>
<tr>
<td>α-thalassemia</td>
<td>2</td>
</tr>
<tr>
<td>Hemoglobin H disease and α-thalassemia</td>
<td>1</td>
</tr>
<tr>
<td>α-thalassemia silent carrier</td>
<td>1</td>
</tr>
<tr>
<td>α-thalassemia in absence of iron lack</td>
<td>1</td>
</tr>
<tr>
<td>Other diagnosis reported</td>
<td>3</td>
</tr>
<tr>
<td>BART Hemoglobin</td>
<td>1</td>
</tr>
<tr>
<td>Iron deficiency anemia</td>
<td>1</td>
</tr>
<tr>
<td>Microcytic anemia</td>
<td>1</td>
</tr>
<tr>
<td>Lost to follow-up</td>
<td>2</td>
</tr>
<tr>
<td>Pending</td>
<td>3</td>
</tr>
</tbody>
</table>
Conclusions

1. Reporting of the 13 High BART did not always result in a diagnosis of alpha thalassemia.
2. Detection of any level of BART hemoglobin led to the diagnosis of alpha thalassemia in 66% of babies.
3. Physician interpretation of the laboratory follow-up data was not consistent.
4. The number of babies lost to follow-up is substantial, possibly indicating physicians do not respond to reports of BART hemoglobin.

Potential Further Studies

- Assess information communicated to mothers when a finding of “High” BART or BART Hemoglobin is reported to the primary care provider.

- IRB approved 😊 (on the 4th try)
Acknowledgements

Dr. Ronald Laessig, Emeritus Professor PHS
Dr. Murray Katcher, WI MCH Programs
Dr. Jeanine Mount, Associate Dean of School of Pharmacy
Gary Hoffman, Newborn Screening Lab Director
Karen Kennedy-Parker, Chemist Supervisor
Thomas Litsheim, Chemist Supervisor
Dr. Carol Diamond, UW Hematologist
Newborn Screening Laboratory staffs
Wisconsin hemoglobinopathy subcommittee