Assessing the built, social, and nutrition environment of Wisconsin communities: the WASABE and ANEW studies

Kelli Blackmore, Madeline Duffy, Sarah Moen, Navnit Sekhon, & Jessica Warrens
Agenda

- Background
- Methods
 - WASABE
 - ANEWC
- Our Field Experience
- Results
- Discussion
- Conclusion
Background
Obesity in Wisconsin

- Rates of obesity are rising in the United States
 - Wisconsin, 2010
 - 27% of adults obese
 - 37% of adults overweight

- Obesity and its associated chronic diseases put economic burden on society
 - US spent roughly $139 billion dollars on obesity-related health care in 2008
 - Wisconsin alone spent nearly $2 billion
What is SHOW?

- The Survey of the Health of Wisconsin, 2008-present
 - Series of independent, annual household surveys
 - Representative sample of Wisconsin adult residents (n=800 to 1,000 annually)
 - Creates comprehensive statewide picture of health
- Data from:
 - Individual interviews
 - Physical exam
 - Follow-up phone interview
- Goal: collect social and built environment data for each participant, with 1.8 participants per household
Schematic

SHOW

ANEWC

NEMS-S

NEMS-R

WASABE

WASABE Audit Tool
Obesity and the built environment

- **Built environment**: structures and spaces created or modified by people
- Characteristics believed to encourage physical activity
- Inconclusive research
What is WASABE?

- Wisconsin Assessment of the Social and Built Environment (WASABE), 2010-present
 - Extension of SHOW
 - Data on physical and social attributes in neighborhoods of SHOW participants
 - Emphasis on determinants of physical activity in one's built environment
 - Direct observation, audit tool
WASABE Aims

Primary Aim

- To examine the association between built and social neighborhood attributes and levels of physical activity in Wisconsin adults

Secondary Aims

- To identify differences in built and social neighborhood attributes by race/ethnicity, SES, and urbanicity
- To analyze the roles of the built and social environment on physical activity-related health disparities
- To examine relationships between observation data & extant data from GIS with data from individuals' perceptions of the neighborhood
Obesity and the nutrition environment

Nutrition environment: places in a community where people buy or eat food

- **Restaurants**
 - More of the food dollar going to restaurant meals
 - Increased caloric density of restaurant meals with decreased nutrient value
 - Presence of fast-food restaurants positively associated with obesity

- **Food Stores**
 - Presence of supermarkets inversely related to obesity rates
 - Supermarkets offer access to fresh fruits and vegetables, better quality diets
What is ANEWC?

- Assessing the Nutrition Environment of Wisconsin Communities (ANEWC), 2010-present
 - Ancillary study to SHOW
 - Data gathered on nutrition environment
 - Restaurants
 - Food Stores
 - Focus on determinants of healthy eating
 - Standardized observational survey
ANEWC Aims

Primary Aims

- To document strengths and weaknesses of the food environment in Wisconsin

- To examine the association between the food environment and diet quality and weight among Wisconsin adults

- To develop and test a pilot intervention to improve the food environment in Wisconsin communities
Methods:
WASABE
Methods: WASABE

- GIS Mapping
- Street Network Analyst used to create boundary around SHOW household
- Boundary represents "walkable distance"
 - 400 meters (1/4 mile) from each household for both urban and rural areas
 - ~5 minute walk
Methods:
The WASABE Audit Tool

- Direct observational audit tool developed by WASABE team based on theory, literature review and consultation with content experts in the field

- The tool covers the following domains:
 - Predominant land use
 - Availability of public recreational facilities
 - Number and type of non-residential destinations
 - Pedestrian safety from traffic and crime
 - Aesthetics
 - Social climate
Methods:
The WASABE Audit Tool
Methods: WASABE

Data Collection

- Field Teams
 - 2-4 people

- Maps & GPS devices
 - Each team given a map of polygon
 - GPS used to measure distance of blocks that reach polygon boundary
 - GPS used to find starting point of polygons without an intersection
Methods:
ANEWC
Methods: ANEWC

GIS Mapping

- Drivable distance from household:
 - 2 miles for urban/suburban areas
 - 5 miles for rural areas
- Enumerating, mapping, and assessing food stores and restaurants within buffer area
- Data
 - Collected at outlet level
 - Aggregated and analyzed at buffer level
Methods: ANEWC

Outlet Selection

- Esri Business Analyst
 - Extension of ArcGIS
 - Restaurants and food stores in WI in 2008

- In-Field Observation
 - Teams of 2-4, given maps and tracking forms
 - Outlets added or removed, classifications modified, based on what observers saw in the field

Audit Tool

- Nutrition Environment Measures Survey (NEMS)
 - As developed by: Glanz, Frank, Saelens, & Sallis
NEMS-R
NEMS for Restaurants
Methods: NEMS-R

Nutrition Environment

- Restaurants
 - Fast Food
 - Sit Down
 - Fast Casual
 - Drinks and Food
 - Unique to ANEWC project
Methods: NEMS-R

<table>
<thead>
<tr>
<th>Menu Review</th>
<th>Select One</th>
<th>Choices (#)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16) Main Dishes/Entrees:</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>a. Total # Main Dishes/Entrees</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Healthy Options</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17) Main dish salads:</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>a. Total # Main dish salads</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Healthy Options</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Low-fat or fat free salad dressings</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18) Fruit (w/out sugar)</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19) Non-fried vegetables (w/out sauce)</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20) Diet soda</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21) Other healthy or low calorie beverage?</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods: NEMS-R

Variables measured

- Facilitators of healthy eating
- Barriers to healthy eating
- Availability of healthy options
- Pricing comparisons
- Kids' menu
 - Availability
 - Healthy options
NEMS-S
NEMS for Stores
Methods: NEMS-S

Nutrition Environment

- **Food Store Categories**
 - Supermarkets
 - Grocery stores
 - Ethnic outlets
 - Convenience stores
 - Gas stations
 - Pharmacies
 - Discount stores
 - Dollar stores
Methods: NEMS-S

<table>
<thead>
<tr>
<th>Item</th>
<th>Available</th>
<th>Price/lb.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthier Option:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Lean ground beef, 90% lean, 10% fat (Ground Sirloin)</td>
<td>Yes</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>Alternate Items:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Lean ground beef (<10% fat)</td>
<td>Yes</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>% fat</td>
<td>Yes</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>3. Ground Turkey (< 10% fat)</td>
<td>Yes</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>% fat</td>
<td>Yes</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>4. # of varieties of lean ground beef (< 10% fat)</td>
<td>0 0 1 2 3 4 5 6+</td>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>
Methods: NEMS-S

Variables Measured

- 10 food categories that contribute the most fat and calories to the American diet and those that are most recommended for healthful eating (Glanz et al., 2007)

- Fruit
- Vegetables
- Milk
- Ground beef
- Hot dogs
- Frozen dinners
- Beverages
- Baked goods
- Bread
- Snack Chips
Methods: NEMS-S

Availability
- Are the items carried?
- If carried, are they available?
- How many options are available?

Quality
- Is the item appealing to the customer?
- Is it of good quality or spoiled?

Price
- Prices of healthy foods compared to unhealthy ones
Methods: Data Dissemination
Data Dissemination

- Step 1: County Selection

- Step 2: Engage with Local Stakeholders
Brown County

- Home of the Green Bay Packers
- Data collected in mostly suburban areas
- Director Brown County Health Department
 - Judy Friederichs
Dane County

- Madison
- Data collected in both rural and urban areas
- Public Health Supervisor
 - Judy Howard
Jefferson County

- Watertown and Jefferson
- Data collected in mostly rural areas
- Public Health Officers from Jefferson and Dodge Counties
 - Carol Quest
 - Gail Scott
 - Jody Langfeldt
 - Alex Lichtenstein
Milwaukee County

- Milwaukee
- Data collected in both urban and suburban areas
- Greenfield Health Officer
 - Darren Rausch
- Wauwatosa Health Department
 - Nancy Kreuser
Waukesha County

- Waukesha
- Data collected in mostly suburban and rural areas
- Wellness Coordinator for Waukesha County Technical College
- Kathryn DeRemer
Data Dissemination

- Step 3: Prepare and Share Report
Our Group Field Experience
Goals

- Experience public health in non-academic setting
- Develop leadership and team-building skills
- Develop understanding of study design, management, methods and field implementation
- Develop and improve quality control and quality assurance skills
- Develop understanding of variation in social, built and nutrition environments of Wisconsin communities and potential influence on health
Unique Aspects of Group Fieldwork Placement

- Weekly meetings with Capstone Committee members
- Group capstone paper
- Present to communities
- Develop 4-page reports for county health briefs
 - Serves as template for future data dissemination
Traveling the State

- Team of 18 undergraduate and graduate students
 - Evaluated built, social, and nutrition environments using assessment tools
 - Conversed with citizens curious about WASABE and store owners curious about ANEWC
Working in the Office

- Creating WASABE maps using ArcGIS software for teams to use when conducting assessment in the field

- Performing quality assurance & quality control

- Organizing weekly meetings
Results
Preliminary Results: WASABE

Sidewalk Availability

Mixed-Land Use

Recreational Facilities

Percent

Waukesha Co
Milwaukee Co
Jefferson Co
Dane Co
Brown Co
Preliminary Results: NEMS-R

- Smaller costs less
- Healthy costs less
- Healthy meals IDed
- Nutrition info posted
- Reduced size portions
- Fast Food

Percent

Waukesha Co
Milwaukee Co
Jefferson Co
Brown Co
Dane Co
Preliminary Results: NEMS-S

- Cheaper WW bread
- Cheaper skim milk
- Offer carrots
- Offer bananas
- Supermarket/Grocery

Percent

Waukesha Co
Milwaukee Co
Jefferson Co
Dane Co
Brown Co

Percent
Qualitative Observations

WASABE

- Fewer sidewalks in high SES areas
- Mixed land use often paired w/ high traffic flow

ANEWC

- Prices in inner city food stores greater than food stores in suburban areas
- Minimal availability of food options in rural areas
- Restaurant owners found there was not enough demand for fresh, healthy food to justify offering it
- Restaurants that provided healthy options were proud of their selection
Discussion
Discussion

- Implications of reports to counties:
 - Health assessments
 - Inform future interventions, funding opportunities
 - Stimulate community awareness
 - Establish relationships
Discussion

Strengths

- Utility of assessment tool for public health decision making
 - Data extensive, of good quality
 - Snapshot of neighborhoods
 - Provides baseline data
 - Data can support future policy making

- Potential for ongoing data collection
Discussion

Limitations

- Data representative of state as a whole is difficult to use to craft interventions at a county or city level
- Cannot control for neighborhood selection bias
- Subjectivity of assessment tools
Acknowledgements

- We thank all of the members of the SHOW, WASABE, and ANEWC teams for providing us with both the data and support for this project.
 - Milena Bernardino, Erin Bergman, Maggie Grabow, Noma-Jean Simon, Anne Escaron, and Jordan Bingham.

- We personally thank our capstone committee members: Barbara Duerst, MS, RN; Janice Liebhart, MS; Kristen Malecki, PhD, MPH; Ana Martinez-Donate, PhD; and Sara Soka, MS.
Conclusion

Thank you.

Questions?

Contact Information
- Kelli Blackmore, kebl87@gmail.com
- Madeline Duffy, madeline.duffy@gmail.com
- Sarah Moen, sarah.p.moen@gmail.com
- Navnit Sekhon, navnitsekhon22@gmail.com
- Jessica Warrens, warrens@wisc.edu