Assessment of Non-O157 Shiga Toxin-Producing *Escherichia coli* Infection and Surveillance in Wisconsin

Sarah E. Koske, DVM
Master of Public Health Candidate-Class of 2013
University of Wisconsin- Madison
School of Medicine and Public Health
Presentation Outline

• Introduction
 – STEC infection
 – Serotyping
• Non-O157 vs O157 STEC epidemiology
• The state of STEC screening in Wisconsin
• The public health problem
• Project design
• Conclusions
Introduction

• Shiga Toxin-producing *Escherichia coli* (STEC)
• Normal animal microflora
 – Human illness
• 265,000 STEC infections per year in USA (CDC)

http://rockstargop.files.wordpress.com/2011/04
Reportable Enteric Conditions

<table>
<thead>
<tr>
<th>Disease</th>
<th>2011 case count</th>
<th>Median age</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEC</td>
<td>315</td>
<td>19</td>
</tr>
<tr>
<td>HUS</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>750</td>
<td>34</td>
</tr>
<tr>
<td>Typhoid Fever</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>1385</td>
<td>35</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>738</td>
<td>23</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>73</td>
<td>23</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>13</td>
<td>76</td>
</tr>
<tr>
<td>Giardiasis</td>
<td>585</td>
<td>34</td>
</tr>
<tr>
<td>Yersiniosi</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Vibriosis</td>
<td>6</td>
<td>36</td>
</tr>
</tbody>
</table>
STEC Infection

• What is Shiga toxin?
• Incubation: 3-4 days
• Symptoms:
 – Watery diarrhea, frequently bloody
 – Abdominal cramping
 – +/- vomiting
 – +/- low grade fever
• Complications:
 – Hemorrhagic colitis
 – Hemolytic Uremic Syndrome (HUS)
 – Thrombocytopenic purpura (TTP)

http://www.gardenofeaden.blogspot.com
STEC Infection

- Common vehicles: raw or undercooked beef; (especially ground beef); leafy greens and unpasteurized (raw) milk
 - Person-to-person transmission
 - Tests of cure for daycare, healthcare workers, food handlers

http://www.finlaylab.msl.ubc.ca
E. Coli serotyping

- O antigen from LPS
- H antigen from flagella
 - O157:H7, O26:H11
- 265,000 STEC infections per year in USA (CDC)
 - O157 causes 36%
 - Non-O157 cause the rest

http://www.foodsafetynews.com
Non-O157 STEC

• Important emerging food-borne pathogens
• Outbreaks as well as sporadic infections
• Illness severity vs. number of cases
 – During 2011, in Wisconsin, 121 out of 318 (38%) reported cases of STEC infection were caused by non-O157 STEC
Reported *STEC* cases
Wisconsin, 2011 (n=318)
Reported *STEC* cases
Wisconsin, 2011

Descriptive Epidemiology

<table>
<thead>
<tr>
<th></th>
<th>O157 (n=180)</th>
<th>Non-O157 (n=121)</th>
<th>All STEC (n=318)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Confirmed</td>
<td>180</td>
<td>121</td>
<td>318</td>
</tr>
<tr>
<td>Sex</td>
<td>51.67% Female (n=180)</td>
<td>61.15% Female (n=121)</td>
<td>56.6% Female (n=318)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>18 years old</td>
<td>19 years old</td>
<td>19 years old</td>
</tr>
<tr>
<td>Mean</td>
<td>26</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Range</td>
<td>0-89</td>
<td>0-88</td>
<td>0-89</td>
</tr>
<tr>
<td>% < 18 years</td>
<td>48%</td>
<td>47%</td>
<td>47%</td>
</tr>
<tr>
<td>No. hospitalized</td>
<td>68 (37.78%)</td>
<td>20 (17.7%)</td>
<td>93 (30.49%)</td>
</tr>
<tr>
<td></td>
<td>n=175</td>
<td>n=113</td>
<td>n=305</td>
</tr>
<tr>
<td>No. died</td>
<td>3 (1.67%)</td>
<td>0 (0%)</td>
<td>3 (.98%)</td>
</tr>
<tr>
<td>No. HUS</td>
<td>4 (2.2%)</td>
<td>0 (0%)</td>
<td>4 (1.26%)</td>
</tr>
</tbody>
</table>
Non-O157 STEC

- Non-O157 are a threat to food safety
- Top non-O157 serotypes implicated in illness (CDC):
 - O26 (22%)
 - O111 (16%)
 - O103 (12%)
 - O121 (9%)
 - O45 (7%)
 - O145 (5%)
- “Big Six” classified as **adulterants** (September 2011)
- USDA begins testing for Big Six (June 2012)
Benefits of Testing

• Early diagnosis can influence patient management
• Early diagnosis can prevent further spread of illness
 – Food handlers
 – Daycare settings
• Testing helps identify clusters and outbreaks
The Public Health Problem:

- Non-O157 STEC now classified as adulterants
- CDC guidelines for clinical laboratories
- Non-uniformity of clinical laboratory screening protocols in the state
 - STX screening- 36/130 labs
 - Cultures
CDC Guidelines for HC Providers and Clinical Laboratories

Guidelines to ensure as complete as possible detection and characterization of STEC infections include the following:

- Specimen received by clinical laboratory
 - All samples should be cultured for STEC O157 AND screened for STX production by EIA or PCR
 - All STX positive samples and STEC O157 isolates should be sent to public health lab for characterization

 O157 culture only? STX screening only?

- If HUS patient without positive culture, send sample to public health lab or CDC for add’l tests

 - Public health lab isolates non-O157 STEC

http://www.cdc.gov/ecoli/clinicians.html
http://www.cdc.gov/mmwr/PDF/rr/rr5812.pdf
Project Design

1. Clinical laboratory survey
2. Analysis of STEC surveillance data
3. Mapping and modeling
4. Recommendations
Clinical Laboratory Survey

- Variation in testing protocols exists
- Survey of existing clinical laboratory testing protocols in conjunction with WSLH
- CDC Guidelines alignment

Clinical Laboratory Survey

• Online link
• Sample questions:
 – Does your laboratory currently test for Shiga toxin (STX) production?
 – If you perform in-house testing, which kit do you use?
 – Which samples are screened?
 – All samples?
 – Requested samples only?
 – *E. coli* O157:H7 isolates only?..
 – Do you culture STX positive samples? (details)
 – Do you routinely culture non-O157 cases? (details)
• Survey results will be reported back to participants
Project Design

1. Clinical laboratory survey
2. Analysis of STEC surveillance data
3. Mapping and modeling
4. Recommendations
Analysis of STEC Surveillance Data

- WI DHS surveillance data (2006-present)
- FoodCORE grant surveillance data (2011-2012)
 - Labs A, B, and C
 - Different geographical areas
- Descriptive epidemiology, O157 and non-O157 STEC
 - Demographic data
 - Onset dates
 - Symptoms and severity
 - Exposure characteristics
 - Geographical data
Project Design

1. Clinical laboratory survey
2. Analysis of STEC surveillance data
3. Mapping and modeling
4. Recommendations
Mapping and Modeling

- Map geographic distribution of cases over time
- Map clinical laboratory territory and dates of testing onset
- Model expected case burden by county, and compare with observed case burdens over time
- Identify and describe areas of potential surveillance enhancement
Mapping and Modeling
2011 Confirmed STEC Cases by County (n=319)

Non-O157 (n=138) O157 (n=181)
Mapping and Modeling

- Map geographic distribution of cases over time
- **Map clinical laboratory territory and dates of testing onset**
- Model expected case burden by county, and compare with observed case burdens over time
- Identify and describe areas of potential surveillance enhancement
Reported Shiga toxin-producing *Escherichia coli* (STEC) cases
Wisconsin 2005-2011
Mapping and Modeling

- Map geographic distribution of cases over time
- Map clinical laboratory territory and dates of testing onset
- Model expected case burden by county, and compare with observed case burdens over time
- Identify and describe areas of potential surveillance enhancement
Project Design

1. Clinical laboratory survey
2. Analysis of STEC surveillance data
3. Mapping and modeling
4. Recommendations
Conclusions

• Non-O157 STEC are emerging foodborne pathogens
 – Number of reported cases
 – Sources
 – Adulterants
• Epidemiology of non-O157 STEC cases in Wisconsin has not been extensively studied
• Availability of testing has increased in recent years, leading to enhanced STEC surveillance
• Testing protocols vary by laboratory, leading to possible variation in number of diagnosed non-O157 cases
• Review of existing laboratory testing protocols in relation to geographical case distribution over time could help illustrate areas of potential STEC surveillance enhancement
Acknowledgements

• Barb Duerst and Terrie Howe
• Capstone committee:
 – Rachel Klos, Ajay Sethi, Ron Gangnon
• WSLH- Dave Warshauer and Tim Munson
• Justin Kohl and the DHS SOS Team staff
Contact Information

Sarah E. Koske
koske@wisc.edu

http://www.tumblr.com/tagged/ecoli